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An experimental study of laminar plumes 
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We present an experimental study of the scaling laws for the front (or cap) of an 
isolated, laminar starting plume. The scaling relations are formulated and measured 
experimentally over a range of power, fluids, and heaters. The results are that the cap 
rises at constant velocity, grows diffusively in width, and its temperature depends 
inversely on height. This extends analytic results by Batchelor (1954) for the column 
(stem) below the front. The source size determines initial conditions for the cap, but 
does not affect it in the far field. The shape of the front is fitted by a model of potential 
flow. The interaction between plume caps is complex, but with simple underlying 
dynamics. We conjecture that some of our conclusions can be applied to a distribution 
of plumes, as in soft turbulent convection. 

1. Introduction 
When a heat flux is applied to a localized region in a fluid, the ensuing mushroom- 

like convection pattern has three main constituents: a boundary layer in the vicinity of 
the heater; a cap which forms at the upwards propagating front; and a corridor (or 
stem) connecting the two (see insert to figure 1). In practical situations the relevant 
structure is usually the stem, since in heat transfer the problem is the long-term cooling, 
and transient phenomena are unimportant. However, in the study of turbulent 
convection it has been found (Chu & Goldstein 1973 ; Solomon & Gollub 1990; Zocchi, 
Moses & Libchaber 1990) that at moderately high Rayleigh numbers the caps become 
the dominant structures in the flow field. It is for this reason that we developed an 
interest in the behaviour of the caps themselves. 

It is our aim in this paper to present the scaling laws of the cap (see table 1). For that 
purpose, we first formulate the equations of motion with realistic boundary conditions, 
then experimentally measure the scaling exponents for (i) the rising velocity of the cap, 
(ii) the growth rate of the cap, and (iii) the temperature inside the cap. The results can 
be summarized by saying that the velocity is constant in time and scales with power 
input and viscosity (figure 4), the growth rate is diffusive (figure 6), and the temperature 
scales inversely with height and directly with power input (figure 7). We present results 
on the shape of the plume and on the transient leading to its formation. The stem is 
treated only in passing. Interactions (and collisions) between plumes are a natural 
extension of this study, and we find that simple dynamics can describe them. We also 
give arguments that the scaling laws may be valid for plumes in some range of 
convective turbulence. 

t Present address : Department of Physics, Weimann Institute, Rehovot 76100, Israel. 
$ Present address: Ekole Normale Superieure, 24 rue Lhomond, 75005 Pans, France. 
1) Present address : Department of Physics, Princeton University, Princeton, NJ 08544, USA. 
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Non- 
Batchelor dimensional Dimensional 

Quantity Prefactor variables variables variables 

Velocity v, 

Cap width a - a, 

(0.20 f 0.02) (F/  

(4.2 f 0.2) .-;(f);.; 
Build-up time I, (40 f 5 )  ( $ R  

F 

gav 
Cap temperature B (0.05+ 0.01) U - 2-1 

R(7) [ K ( f  - to)]: 

R 

TABLE 1. Summary of the scaling relations determined experimentally. Here F = g a P / p C ,  is 
Batchelor's scaling variable, 9, = gaPRS/KapC, our version of the flux Rayleigh number, and 
u = W / K  is the Prandtl number. 

2. Review of previous results 
Much effort has been devoted to the study of plumes and in reviewing the literature 

one finds diversity and some confusion. This comes from the fact that plumes may 
originate from a point or a line source, can have a sustained or 'one-shot' heat input 
(thermals), can be steady (the stem) or starting (the cap), can be turbulent or laminar, 
and thus a unified view is hard to come by. For a review on the subject see, e.g. Turner 
(1969, 1973, chap. 6.) and Gebhart et al. (1988). 

The related subject of a point source of intense heat became the object of obvious 
attention with the advent of the atomic bomb, and was treated by Taylor (1941, 
1950 a, b) and by von Neumann (1 941, 1946). In that case, a shock wave develops and 
the only length scales with ti (t is time). 

Plumes are slightly more complex, combining effects of buoyancy, diffusion and 
advection. It seems that Zeldovich (1937) was the first to treat the steady-state problem 
of the stem. A clear outline and the main results are given by Batchelor (1954). A 
similarity solution of the form z"f(r/a) for the velocity and the temperature inside the 
stem is assumed, where z is the height, r the radial distance, a the radius of the plume 
and f an unspecified profile function. Dimensional analysis then invokes heat 
conservation along the stem and assumes a balance between viscous dissipation and 
buoyancy forces. The result is that the vertical velocity us is constant, the lateral growth 
is governed by diffusion processes, so that the stem's shape is parabolic, and the 
temperature is linear with heat input and inversely proportional to height, which 
implies that the Nusselt number is constant. 

On the basis of these results, analytical solutions for the stem in the laminar case, 
using a similarity approach, have been given by Yih (1951), Fujii (1963), Fujii, 
Morioka & Uehara (1973) and Pera & Gebhart (1971). They all found an analytical 
solution for a two-dimensional approximation of the problem at special values of the 
control parameters (e.g. Prandtl numbers of 1 and 2). They did not give a scaling 
dependence on the Prandtl number, and for different values of this parameter a 
numerical technique was needed. 

The cap itself was first treated theoretically by Turner (1962), building on his work 
with Taylor and Morton (see below). He matched a vortex ring solution on top of a 
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turbulent stem solution. As a result, the cap velocity u, decreased with height (u, - 2-3 
and the width was linear with height. This scaling is different from the measurements 
of laminar starting plumes reported in the present paper, since it corresponds to a 
turbulent stem. We shall show that in a way Turner’s result is also valid for the laminar 
case, in the sense that the scaling established in the stem extends into the cap. 

Plumes lose their stability when the Reynolds number of the cap becomes too big. 
For turbulent plumes advective processes are dominant, and diffusive ones irrelevant. 
Lateral growth of the stem when advection dominates can occur only by entrainment 
from the surrounding fluid. For a discussion of the entrainment assumption and its 
consequences, see Turner (1986). The horizontal inflow velocity is shown to be 
proportional to the vertical velocity, which is no longer constant, decreasing with 
height. The lateral expansion is proportional to the height, and the shape of the stem 
is then conical. Morton, Taylor & Turner (1956) quantified the effect of entrainment, 
and formulated a model that generalized these results for the atmosphere, where the 
surrounding fluid is stratified. 

On the experimental side, very extensive work has been done by Gebhart and 
coworkers on the properties of the stem (see e.g. Schorr & Gebhart 1970; Gebhart, 
Pera & Schorr 1970; Pera & Gebhart 1975 and Polymeropoulos & Gebhart 1967). The 
configuration of choice was usually a linear heater, which is the practical situation 
(cooling from a hot pipe) and is experimentally convenient. The temperature field was 
measured by an interferometric technique. A comprehensive account can be found in 
the book by Gebhart et al. (1988). 

The most extensive experimental study of the cap has been done by Shlien and 
coworkers. Shlien & Boxman (1979) have measured the temperature field inside the 
steady-state stem, comparing it to the analytic similarity solutions of Yih, but had to 
postulate the existence of a virtual point source to obtain agreement. They also 
measured the detailed temperature field in the cap (Shlien & Boxman 1981), while 
Shlien & Brosh (1979) measured the velocity field inside a one-shot plume (thermal). 
Since the existing similarity theory was derived for the temperature of the stem, not of 
the cap, they did not check its scaling properties. Scaling results were given for the rise 
velocity of the cap (Shlien 1979), but again, since no theory was available, they 
measured only the obvious parameter of power input. Shlien (1976) did try to measure 
the scaling of the width of the cap, but he had a limited resolution, and since the only 
scaling theory at his disposal was Turner’s, he ended up concluding that the cap size 
is proportional to the height. This is different from the scaling that we measure. Shlien 
(1978) gave a criterion for destabilization of the plume that depends on the Reynolds 
number at the cap. 

Plumes also appear in other circumstances : Sparrow, Husar & Goldstein (1970) 
showed by using an electrochemical dye that many plumes are created above a heated 
horizontal plate, and that they appear with a periodicity related to the time for creation 
of a thermal boundary layer. Chu & Goldstein (1973) discovered starting plumes in a 
visualization experiment on turbulent convection, which sparked a renewed interest in 
these structures. More recently, experiments on turbulent convection by Solomon & 
Gollub (1990) and by Zocchi et al. (1990) using thermochromic liquid crystals have 
shown that the plumes are part of a cycle of coherent structures that comprise the 
large-scale turbulent flow. 
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3. The experimental apparatus 
Our experimental apparatus consists of a glass tank 10 x 10 x 20 cm high. 

Temperature stability over the lifetime of the plumes was typically better than 5 mK. 
Typical heaters were 100 R commercial resistors. For cylindrical heaters we defined an 
effective radius R as the radius of a sphere with the same surface area. We used three 
cylinders of length 0.3, 0.5 and 1.8 cm with R = 0.06, 0.17 and 0.58 cm respectively, 
and spherical heaters of radius 2-1 mm made by embedding a heater inside a brass or 
copper ball. We monitored the internal temperature of the 100 R, R = 0.17 cm resistor 
by embedding inside it a thermistor, whose resistance we monitored. The smallest 
heater used (R = 0.06) was a commercial thermistor, and by monitoring its own 
resistance we knew the temperature inside it. 

The bulk of our measurements utilized a standard computer-enhanced shadowgraph 
technique. Our resolution, in space, was about 0.5 mm, and in time was 30 Hz. We 
periodically checked the geometrical distortion by the calibration of known lengths, 
keeping distortion below 5%. The distortion due to the shadowgraph is harder to 
evaluate, since the nonlinear effects are difficult to calibrate. The plume presents a 
problem both because it is an imperfect lens and because its effective focal length 
changes as it rises, by growing and by cooling. For large enough deflection of the rays 
from the source a caustic is formed outside the plume - this occurs in water near the 
heater, and in oil all along the plume. At lower density gradients a thin 'halo' forms 
round the heated regions. 

We therefore checked the shadowgraph against a visualization technique utilizing 
thermochromic liquid crystals (TLC). These are commercial cholesteric liquid crystals 
(manufactured by Hallcrest of Glenview, IL) encapsulated in microspheres (50-100 pm 
diameter). In very low concentrations (- by weight) they behave in the flow as 
suspensions. One obtains a qualitative picture of the temperature field (through the 
colour change of the liquid crystals), and also of the velocity field (by following the 
motion of the particles). The colour turns from red to green to blue in a temperature 
window of about 1 "C around 25 "C. An example of this visualization is shown in 
figure 1. 

By comparing these two techniques we found that the shadowgraph obscures the 
edge of the temperature profile, where the gradients are small and the temperature 
slowly falls off. The stem entrains colder fluid into its envelope, but the core remains 
hot. Thus in the shadowgraph we see the stem as an essentially straight black column. 
The TLC picks up the full extent of the stem, showing it to widen as it rises. For the 
cap we found that TLC gives the same shape as that given by the shadowgraph, but 
slightly larger - in the white border on top of the shadowgraph image of the cap there 
is region of intermediate heat, which the shadowgraph misses because it is near the 
region of large gradient. 

We measured the temperature of the cap by placing a thermistor in its path. This was 
sensitive to the intricate structure inside the cap and to lateral deviations in the plume 
trajectory, with a scatter of 10 YO typical. Only the initial climb of the temperature as 
the plume cap hits the heater was used. 

To explore a wide span of the control parameters we used a variety of fluids. Table 
2 summarizes the physical properties for the fluids we used. We found that the data 
provided for the oils is correct to within 10-15 YO. The viscosities of the oils have an 
exponential dependence on temperature, but our measurements are not affected by 
this, either because viscosity does not figure in the quantity measured, or because the 
relevant viscosity is that of the ambient, not the heated, fluid. 
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FIGURE 1. Thermochromic liquid crystals used to visualize a rising plume. A vertical sheet of white 
light - 2 mm thick is shone from the left. P = 1.25 W, R = 0.17 cm, t O / T  = 0.12. Shades of green and 
blue (hot) are seen as light areas, while the red (colder) background is dark. The heater is bright white 
at bottom centre. Non-dimensional time I / T  is (a) 0.47, (b)  0.61, (c) 0.77, ( d )  1.02. Insert: schematic 
drawing of a plume, illustrating its major constituents. Arrows inside the plume indicate the flow 
along the stem and into the cap. 

Water Methanol Pump oil Silicon 
oil 

Density, p (g/cm3) 0.997 0.787 0.8 1 1.11 
Viscosity, Y (cm'/s) 8.9 x 10-3  7 x 1 0 - 3  0.3 5.0 
Thermal diffusivity, K (cm*/s) 1.45 x 1.0 x 10-3 8 x 9 x 10-4 
Specific heat, C (J/g K) 4.18 2.5 2.3 1.5 

Prandtl number, cr 6.2 7 3.8 x lo2 5.7 x 103 
Expansion coedcient, a ( I /K) 2.6 x 1.4 x 1 0 - 3  7 x 10-4 8 x lo-' 

TABLE 2. Physical properties at 25 "C of the fluids used in the experiment. The pump oil used was 
Precision D manufactured by the GCA Precision Scientific Group, Chicago IL, and the silicon oil was 
Dow Corning 710 Fluid manufactured by the Dow Corning Corp., Midland, MI. 

4. The scaling approach 
The equations for this system (in the Oberbeck-Boussinesq approximation) are 

1 (a, + U -  v) u = - -Vp  + vV2u +ga& 
P 

v - u  = 0, 
(a, + U - v) 6 = K v 2 8 ,  

F I  M 751 
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with u the velocity, p the pressure and 8 the temperature fields; p the density, v the 
kinematic viscosity, a the expansion coefficient and K the thermal diffusivity of the 
fluid; and g is the acceleration due to gravity. i is the unit vector in the upward 
direction. The experimental boundary conditions are 

u = 0, 0 = 0 at infinity, 

u = 0, a,O = P / 4 r c R 2 ~ p C p  at the heater (r = R), 
where P is the power output, and where we assume that the diffusive boundary layer 
around the heater is isotropic. Natural units for length, time and temperature are then 
R, 7 = R2/K and x = P/RKpC, respectively. By making the change of variables we 
obtain 

( a , + U . v ) U  = -vp+vv2u+sefei, 

(a, + u .  v) e = vie, 
v . u  = 0, 

where v = V / K  is the Prandtl number and gf = g ~ r P R ~ / ~ ~ p c ,  is a new control 
parameter, which we can think of as a flux Rayleigh number. gf is different from the 
standard control parameters in two respects. First, and most important, is the fact that 
standard usage (dating back to Yih 1951) did not include R as a lengthscale, leaving 
the control parameter dependent upon powers of the height z. Second, more superficial 
is the third power of K ,  which could be converted to a combination of powers of K and 
v by an appropriate choice of timescale, effectively a change in the cr dependence. Upon 
changing variables the boundary conditions change to are = 1/4n at the heater. 

A different approach, well described by Batchelor (1954), supposes that we are 
interested only in values far away from the heater. The problem for the stem can then 
be solved analytically by dimensional analysis alone. This solution does not apply to 
the cap because it uses steady-state considerations on the conservation of heat flux. The 
judicious choice of unit is then to replace the power P with 

F = ( g 4 P C p )  p 

which has simple dimensions (~elocity)~ x length. 
We shall show experimentally that Batchelor’s scaling extends to the cap once it is 

away from the heater. This could not be predicted beforehand, since the addition of a 
lengthscale to the problem can have profound effects on the solutions. The importance 
of the region round the heater has already been pointed out by Priestley & Ball (1955). 
For a complete discussion of the possible effects and scenarios once a lengthscale exists, 
see Barenblatt (1979, chap. 1 4 ) .  

We end up with three sets of variables for describing the scaling: Batchelor’s 
variables, F and the viscosity v, are simple and elegant but do not take the size of the 
heater R into account ; then there are the non-dimensional variables 9tf and v, and these 
contain R ;  finally, there are the dimensional units used in the experiment. In what 
follows we shall give the formulae in all three forms, although the analysis is principally 
based on the non-dimensional units. 

5. Shape of the plume 
To measure the size of the plume and its scaling precisely, a model for the shape was 

indispensable. In a previous publication (Moses et al. 1991) we introduced the notion 
of describing the shape of the cap as a dividing line of a simple potential flow. We 
reported the experimental observation that the shape is well described by the Rankine 
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FIGURE 2. Fits of Rankine shapes to the front of a plume, P = 1.25 W. Dots are the digitized 
data and the line is the fit. Non-dimensional times t / ~  and the fitted values of a / R  are: (a) 0.16, 1.4; 
(6) 0.32, 2.3; (c) 0.48, 2.9; ( d )  0.61, 3.5; (e) 0.76, 4.1; (J) 0.92, 4.6. 

fairing (Rankine 1984, see also the book by Lighthill 1986 or a full description), formed 
by the potential flow of a point source travelling upwards in the fluid. In cylindrical 
coordinates, with the source at the origin and the uniform flow in the -z-direction, 
that potential is dj = u, z - J/4nr,  where u, is the uniform velocity, J the strength of the 
source and r the distance from it. This potential is familiar from electrostatics - a  
charge in a uniform field. The flow defined by this potential has a stagnation point on 
the z-axis at z = :a, where a = (J/KU,);. The streamline through this stagnation point 
defines a cigar-like shape of semi-infinite extent (the Rankine fairing), which is 
completely determined by the single parameter a, the width of the cigar quickly 
asymptoting to 2a. 

While potential flows have been well known for over a hundred years, their 
application to thermal instabilities has been rare. Use of such ideas can be found in the 
work of Zufiria (1988) for the Rayleigh-Taylor instability. Point singularities have also 
been used by Aref & Tryggvason (1989) for the Rayleigh-Taylor problem with point 
vortices. 

In figure 2 digitized shadowgraph images of a plume similar to that of figure 1 are 
displayed, along with the corresponding fits to a Rankine fairing. As the plume grows 
in time, the parameter a grows too. The shape remains the same, reparameterized by 
the value of a. We have tried different forms of one-parameter models, but did not 
obtain a fit as good as one for the Rankine shape. It is possible by the use of two 
parameters to obtain a reasonable fit (to half an ellipse, for example), but a one- 
parameter fit is far more convincing. 

Figure 3 shows a shadowgraph image of a plume under conditions similar to those 
of figure 1, except that the fluid is of high viscosity (500 cS) silicone oil. There are 
differences in size and in time scales. Everything moves more slowly in oil and the lobes 
do not swirl. Yet the envelope of the cap is well described by the Rankine shape for 
both water and oil. 

While there is no rigorous justification for the model for the cap shape, once it is 
experimentally verified one must try to understand its plausibility. The main reason we 

20-2 
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FIGURE 3. Shadowgraph images of a rising plume in 500 cS oil. P = 1 .O W, R = 0.17 cm, f0/7 = 0.69. 
Note that in (a) the plume has not erupted yet and the boundary layer is symmetric round the heater. 
No image subtraction was used, but a cusp in the image around the cap was eliminated digitally. Non- 
dimensional time f/7 is: (a) 0.40, ( h )  1.04, (c) 1.68, ( d )  2.32, (e) 2.96. 

see for the success of the model comes from the experimental observation, based on the 
TLC studies, that the front of the plume is dominated by flow from the stem. In the 
frame of the cap, the jet produces an effect which is very similar to the picture given 
by the potential flow model. It comes from a localized source, hitting the front at a 
velocity us - u, (with us the stem velocity). At the same time the ambient fluid is flowing 
uniformly downwards. 

Entrainment and vorticity occur in abundance in the lobes of the plume, but this is 
not necessarily so at  the front. Most of the observed entrained fluid enters from the side 
of the cap and its lower part, playing an important role in the lobes. The outer envelope 
of the cap, meanwhile, is dominated by the jet impinging on the cold water above, then 
spreading out from the tip, subsequently descending (in the frame of the cap) to swirl 
and form the lobes (see insert to figure 1). This explanation is reinforced by the 
observation that while the plumes in low- and high-a fluids have very different internal 
structure, the shape of the front is the same. It is possible that the model works because 
the potential flow describes the conditions outside the cap correctly. 

Plumes constrained to flow in a two-dimensional channel are an interesting variation 
of the shape problem. Recently Zocchi, Tabeling & Ben Amar (1992) have shown that 
the corresponding shape is a Saffman-Taylor finger solution. They have given a 
theoretical treatment which explains the role of thermal diffusion in creating an 
interface, and which is in good agreement with their experimental measurements. 

6. Results: the experimental scaling laws 
6.1. Velocity 

The easiest measurement of a plume is its height as a function of time, taking the 
position of the top of the cap from video data. The plumes move at a constant velocity 
which depends on the power input P and on fluid parameters. A large range of 
parameters is achieved by changing both fluids and heaters. Figure 4 shows that the 
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is a = 0.23 f 0.05. The error is relatively large because of the uncertainty in physical 
properties and because of possible non-Boussinesq effects (see discussion below). To 
decrease the error we put higher weight in the fit on the result for the R = 0.17 cm 
heater in water, which gives a = 0.20f0.02, within the previous error bar. In - 
dimensional form we get 

V ,  = (0.2 * 0.02) (gaP/vpC,)t. 

We note one feature immediately - the heater size R has dropped out. The velocity 
is a quantity which can be measured at those intermediate asymptotic distances, large 
compared to the heater size, where we expect the heater size to be irrelevant. 

While figure 4 leaves no doubt that the scaling works, the exponents derived for each 
fluid individually give a value of about 0.5 f 0.1, which is a large spread. We believe this 
is due to non-Boussinesq effects in the silicon oils. For the temperature difference near 
the heater (on the order of 10 K) the viscosity changes by a factor of about 2. However, 
the velocity of the plume is determined by the viscosity of the fluid which is being 
pushed back, i.e. that of the ambient, colder fluid. Note that the result given by Shlien 
(1979) for water, using a totally different heating mechanism, can be described by this 
form to within 5%. 

Phenomena that occur in the region of the heater are related to the initial formation 
of the plume and determine its initial conditions. These are likely to be affected by its 
size. 

The first quantity we find is the transient time to for the plume to appear, measured 
from when we turn on the power (see Vest & Lawson 1972 for images of the diffusive 

6.2. Vicinity o j the  heater and the stem 
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FIGURE 5. Non-dimensional build-up ti,my t0 /7  for the plume, shown as function of the scaling 
relation 9;~cr~. Symbols as for figure 4. 

boundary layer buildup). We expect the boundary layer to erupt when it reaches a 
critical Rayleigh number Ra,. The time it takes to develop a diffusive boundary layer 
of thickness S(P) is to(P) = S 2 / ~ ,  and we assume the boundary layer to be marginally 
stable to Rayleigh-Benard convection. Another way to think of to is as the time it takes 
for the convective transport to exceed the conduction transport in the outer part of the 
forming boundary layer. The latter is more physically appealing, since we know that 
there is no instability in the case of a horizontal gradient. However, up to a factor 
involving Ra, both approaches give the same result for to .  We write S3 = ( K U  Ra,) / (agd)  
where A is the temperature at the edge of the boundary layer. The spherical diffusion 
profile round the heater gives a temperature d = (PS)/ (K~C, R(R+S))  at a distance 6 
from the heater. For R > B this gives tXP) = (Ra, 4nR2pC, v)/(Pag),  or in scaled form 

iR2  1 1 

to = (47~ Ra,)s-%';r@ = ( 4 ~  
K 

Notice that R appears in the expression for to. To evaluate to we use the observation 
that for every fluid the curves of position versus time for the cap seem to originate from 
a common point zo (this is the origin of the 'virtual point source' approach, see Morton 
et al. 1956). Since z = v,( t - to) ,  we can immediately eva1ua;te f o  from to = -zo/u,. 
Figure 5 gives the measured values of t0/7 as function of &';$ ur (where 7 = R 2 / ~ ) ,  from 
which we obtain Ra, = 130530. It is remarkable that this is precisely the Rayleigh 
number of the boundary layer in turbulent Rayleigh-Benard convection measured 
both by Castaing et af.  (1989) and by Zocchi et af. (1990). The value of to can range 
from a minute or so in the 500 cS oil at 0.2 W to about a second for the same power 
in methanol. 

It is now clear why zo mimics a 'virtual point source'. It is independent of power or 
fluid, since 
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Measuring z ,  thus gives a consistency check on our choice in § 3  of an effective radius 
R for cylindrical heaters. The measured values fall within 2 4  % of the calculated ones. 

Other lengthscales we can measure are the stem width s, the boundary-layer 
thickness 6 and the initial size of the plume a,. For the stem Batchelor's scaling gives 
a form 

with G an unknown function of the Prandtl number. We were not able, however, to 
establish the scaling for s experimentally. As noted in $ 3 ,  the shadowgraph does not 
pick up the expected z-dependence, while the TLC does show a trend. Viscosity 
dependence could be checked only by shadowgraph measurements, since the TLC only 
works in water. No obvious P-dependence could be observed in either TLC or 
shadowgraph measurements. 

The absence of any apparent P-dependence raises a problem. The hotter the stem is, 
the narrower it should get. We expect this dependence both from heat conservation 
along the stem, as in Batchelor (1954), as well as from dimensional considerations (a 
lengthscale other than z is needed, and we do not expect R to influence the flow away 
from the heater). 

The situation is similar for the boundary-layer size 6, measured from the 
shadowgraph images. From to = P/K,  and having measured the scaling for to, we 

The measured values for 6 are 0.05, 0.08, 0.12, 0.09, 0.26 and 0.48 cm for R = 0.06, 
0.17 and 0.58 cm in water, and R = 0.17 cm in methanol, 30 cS oil and 500 cS oil, 
respectively. There are four data points covering three orders of magnitude in u, which 
are consistent with a &power law. Three data points for R, covering one order of 
magnitude, are consistent with an Ri behaviour. The range covered in P was slightly 
less than two orders of magnitude, but the narrowing with P was not apparent. 

The measured values (from the shadowgraph) for a,, which determines the initial size 
ofthestem,were0.08,0.16,0.28,0.12,0.5and0.8cmforR=0.06,0.17and0.58cm 
in water, and R = 0.17 cm in methanol, 30 cS oil and 500 CS oil, respectively. As for the 
6 measurements, the four data points for v are well described by a ui  behaviour, and 
the three data points for R are well described by an d behaviour. No apparent P- 
dependence was observed here either. 

We see no clear theoretical consideration which would explain the absence of an 
apparent P-dependence, and tend to view it as an artifact of the measuring techniques. 
The effect of changing P by two orders of magnitude (one order of magnitude for the 
TLC measurements) is expected to be a factor of 1004 - 3.2 (10f - 1.8 for the TLC), 
which is not large. As the shadowgraph does not show the widening of the stem with 
z, possibly neither it nor the TLC show the effect of power on the stem and the 
boundary layer. Shlien & Boxman (1979) have shown that the temperature profile at 
a given height in the stem is Gaussian. As the stem becomes hotter, more of the profile's 
extent can be seen by the shadowgraph. It is possible that the narrowing of the 
Gaussian profile is compensated by the higher temperatures inside it, leaving the region 
that is within the sensitivity of our measuring techniques practically unchanged. 

6.3. Cap width 
Batchelor's scaling predicts a parabolic profile for the stem size s - zi, and we checked 
experimentally that this extends to the cap size a.  To cast this in the form of a diffusion 
process we introduce time, using the linear relation z = u,(t-t,). 
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FIGURE 6. Size of the cap as function of time. The width is obtained from the fit to a Rankine fairing. 
a, and r ,  are initial conditions. The fluid is water. + , R = 0.06 cm, P = 0.08 W; 0, R = 0.17 cm, 
P = 0 . 0 8 W ; n ,  R = 0 . 1 7 c m ,  P = 1 . 2 5 W ;  x , R = 0 . 5 8 c m ,  P = 1 . 2 6 W .  

No exponent can reliably be extracted experimentally from a single plume, so we 
accumulated statistics on short times from fast, well-defined plumes and on long times 
from slow plumes. For faint plumes we were greatly aided by the fitting procedure for 
the Rankine shape, extrapolating a width from the curvature at the tip. This leads to 
some scatter in the measured values of a. When the plume protrudes out of the 
boundary layer, its cap is already formed. We used the values measured in 96.2 above 
for this initial size a,. 

The 9iS dependence was first examined by looking at (a  - a&/ R as a function of time 
in water for several different powers, ranging over almost two decades in gS. No 
dependence on 9, was observed. Least-squares fitting to the form a - a ,  = &(?- to)]b 

gave an exponent of 0.54f0.05. The dependence on time (or on height) is indeed 
diffusive. R disappears from the expression, as expected for measurements far enough 
from the heater. 

As time is scaled by 7 = R 2 / ~ ,  we can extend our range by using very small as well 
as very large heaters. In figure 6 three different heaters are compared in water. We used 
cylinders of effective radius 0.06, 0.17 and 0.58 cm. The slope is very close to (actual 
best fit is to an exponent of 0.49). To find the dependence on the Prandtl number we 
also looked at the cap size (a -a , ) /R  as a function of time for the four different fluids. 
We found that the growth does not depend on viscosity, and fitting the data to the form 
a - a, = d[K(f - to)]" we find again /? = 0.49 and d = 4.1. We summarize that 
d = 4.2 f 0.2, giving an effective diffusion-constant value K' = (1 7.5 f 3) K .  In terms of 
the scaling parameters 

a-a ,  = (4.2f0.2) R ( r ~ f o ~  - = (4.2 f 0.2) 

The fact that K' 9 K indicates that the process is not a molecular one. This is an 
enhanced diffusion process, aided by advection and entrainmeft, 17.5 times stronger 
than that of purely thermal diffusion. R is eliminated by the +dependence. 
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To summarize, we found that the growth of the cap of the plume is determined by 
an enhanced thermal diffusive process. Surprisingly, the velocity of the cap can have 
an effect only indirectly, through this enhancement, in which entrainment must play a 
role. 

6.4. Cap temperature 
The point-source scaling given by Batchelor predicts for the temperature 8 - Flur, 
which implies a constant Nusselt number Nu, independent of Bf (or F). This 
contradicts our notion that the efficiency of cooling the heater is enhanced by the flow. 
Near the heater a circulating flow exists, a large-scale flow that brings in cooler fluid 
and injects it into the stem. The point-source scaling does not take this into account 
and, as usual, near the heater we can expect it to fail. Thus we can scale three different 
temperatures: the heater, the stem and the cap. We shall not treat the stem here, but 
see Shlien & Boxman (1979). 

We first look at the scaling of the temperature measured inside the heater. Writing 
as usual 8 = B; &“‘t/~, z/R . . .) we found first by comparing water and the oils that 
viscosity plays no role in determining 8, so that p = 0. The Bf dependence of the 
temperature 8 inside the heater for water and the oils is well described by a power law 
with exponent a = -0.12f0.03, which, since 8 is scaled by P, translates into 

NU - By.’2 

at the heater. The prefactor depends on the exact location of our probe inside the 
heater, and’is irrelevant. Note that it is hard to pinpoint small exponents, and we may 
be seeing a logarithmic correction to scaling. 

Putting a thermistor in the path of the plume gives a picture of its temperature 
distribution. The temperature climbs rapidly as the cap strikes the thermistor, peaking 
at a distance from the front which is comparable to the cap width a. It then relaxes to 
a steady-state value about 15 % lower in the stem. This signature of the plume occurs 
for all the fluids we used, but is more stable for the viscous oils. The peak in the cap, 
or ‘transient’ of the stem was noticed by Shlien & Boxman (1979, 1981), and is 
intriguing when one remembers that the stem is the source for the cap. Presumably a 
blob of fluid loses more heat along the stem than while passing through the ‘thermal 
insulation’ provided by the cap. The plume stem and cap then scale similarly but with 
slightly different prefactors. 

Using the peak as a measure of the cap temperature we can find the scaling in the 
cap. It is different than the scaling of the heater’s temperature in that the 4if dependence 
is barely visible. While a fit to a power law gives a = -0.04f0.03, the data is 
indistinguishable from a constant. 

We turn to the behaviour of 6 with height, and find that it tends to l/z for z/R 
greater than about 10. Below that value no power-law behaviour was observed. Figure 
7 gives the z/R dependence of 8 for water and the oils. We cannot obtain a large scaling 
range by changing heater size, because the temperature scaling with R compensates for 
the scaling of z with R. The slope is close to unity (actual value of the best fit to a power 
law is 0.91). Similar deviations exist in the work on the stem by Shlien (1979) - he used 
an offset to a ‘virtual source’ to get a l /z dependence, while Schorr & Gebhart (1970) 
report effects of the finite size of the heater for a line source. 

We summarize our results away from the heater by 

where x = P/RKpC, and F = Pga/pC,. 
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z l R  
FIGURE 7. Non-dimensional temperature as function of height from heater for various values of R 
and of 9, in water and oil. 0. 500 cS, oil, R = 0.17 cm, P = 0.5 W; +, 500 CS oil, R = 0.06 cm 
(various powers); 0, water, R = 0.4 cm sphere, P = 0.5 W ;  0, water, R = 0.17 cm, P = 0.5 W; A, 
water, R = 0.17 cm, P = 0.2 W; x , water R = 0.6 an (various powers). 

4--) 

10 mm 

FIGURE 8. Interaction between two neighbouring plumes in water. The distance between the two 
R = 0.17 cm heaters is d, /R = 5.3, P = 0.25 W per heater and t0/7 = 0.26. Non-dimensional time 
I / T  is: (a) 0.48, (b) 0.73, (c) 1.07, ( d )  1.28, (e) 1.50, (f) 1.71, (g) 1.83, (h)  2.02, ( I ]  2.21. 
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(4 (4 cn 
FIGURE 9. Multiple interactions, leading from four independent, collinear plumes to one joint cap 
with four stems. The field of view covers 87 x 65 mm2. Heaters (not in the picture) are of size 
R = 0.17 cm, P = 0.51 W per plume, and t0 /7 = 0.18. Non-dimensional time from switching on of 
power I / T  is: (a) 0.45. (6) 0.60, (c) 1.02, ( d )  1.51, (e) 1.96, (f) 2.34. 

7. More than one plume 
Plumes interact, collide, etc. The interaction between two plumes is shown in figure 

8, and has been studied in more detail in Moses et al. (1991), where it was shown that 
the model of sources and sinks describes the velocity field of two plumes, and can 
reconstruct the interaction between them up to the point (figure 8d) beyond which the 
plumes join to form one unified object. 

To obtain a criterion for coalescence of two nearby plumes, we estimate the height 
z ,  at which two plumes from heaters at a distance do will coalesce as the height at which 
a = do. We get 

do = (4.2k0.2) v -'(;)t.I. 1 - or z ,  = 0 . 0 6 ~  

The possibility of an inverse cascade comes to mind, and we show in figure 9 how 
four plumes, arranged collinearly to interact first in pairs, change from four (figure 9a) 
to two (figure 9c) to one (figure 9 f) caps. If we put a poyer P into each of the four 
single plumes, their velocity is equal and proportional to P. Once the first interaction 
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(C) (4 
FIGURE 10. Collision of a hot and cold equal-power plume pair. Time between frames is 3 s 

(dimensional - since the effective radius of the Peltier element is undetermined). 

process is complete, the two caps rise at a velocity of .\/2@. After the next interaction 
the velocity goes up again, with the final velocity of the single cap proportional to 2 d .  
During the interaction stage the velocity drops temporarily. 

In figures 10 and 11  we present head-on interactions of hot and cold counter- 
propagating plumes. The cold plume was produced by a small Peltier element. The 
strength of both plumes was adjusted so that the collision was symmetric. Figure 10 
shows the collision between a cold (white) and hot (dark) plume. As they collide the 
caps flatten out, making a circular disc with an interesting vertical structure. The 
boundary between the colliding plumes is sharp, and is maintained for some time. The 
two plumes retain their identity, and there is no mixing or coalescence as is observed 
with ‘like-sign’ plumes. 

It is actually hard to get the plumes to collide head-on (impact parameter 0) although 
figure 10 is close to that. Usually the two plumes would hit at  non-zero impact 
parameter, and sometimes would enter into a ‘bound state’, rotating around a 
common centre. This is shown in figure 11, which is a state of two plumes that rotate 
around each other, alternately forming a front and deflecting off each other. This state 
was observed for over 20 min, with the period stable over short times (10-20 cycles), 
but drifting randomly between 15 and 25 s over longer times. The process resembles a 
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(4 cn k) (h) 

FIGURE 11. ‘Bound state’ of cold and hot plumes rotating round each other, periodically forming it 
front and then parting to emit a cap in each direction. Time is: (a )  t = 0, (b) 5 S, (c) 10 s, ( d )  I5 s, (e) 
17 s, (A 19 s, (g) 22 s, (h)  25 s. 

state of two orbiting particles that emit energy once every cycle - this is the cap of the 
plumes that is shed when the front is re-formed (bottom right in figure 11 e-h). 

8. Plumes in turbulence 
It is natural to assume that plumes which appear in turbulent convection would be 

turbulent as well. We were therefore surprised to find the situation shown in figure 12. 
We show here the shadowgraph of a part of a cubic (18.5 x 18.5 x 18.5 cm’) convection 
cell with water at Ra - lo9 and CT = 6, close to the region of turbulence defined by 
Heslot, Castaing & Libchaber (1987) as ‘hard turbulence ’. In brief, Zocchi et al. (1990) 
found that the large-scale flow is directed along the diagonal in the box. Plumes are 
ejected from ripples (or ‘waves’) of the (say bottom, or hot) thermal boundary layer, 
and swept by the large-scale wind towards the corners, where they tend to accumulate. 
There they climb up, strike the top thermal boundary layer, exciting a new wave, which 
will eject new plumes, which continues the cycle. We note in passing that coalescence of 
two plumes climbing together often occurs, while collisions occur at the off-diagonal 
corners, where both upward and downward plumes can appear. 

Figure 12 shows the centre section of the bottom half of the cell, and the field of view 
is about 5 x 7 cm. The shadowgraph averages along the width of the cell, so the plumes 
we see do not overlap : they are at different distances in the third dimension. We focus 
on one plume, marked by an arrow in figure 12(a), and follow it. It is lightly atypical 
because it does not reach the corner, but that is why we chose it, so that we can follow 
it alone. We did check that the plumes in the corner are similar in shape and behaviour. 
We note three things : first, the source of the plume is localized ; secondly, the rising 
velocity is constant ; thirdly, the shape of our plume is not distorted over the first fourth 
of its journey to the top, in fact it resembles the isolated plumes we have studied in a 
quiescent background. 



598 

(4 

E. Moses, G .  Zocchi and A .  Libchaber 

(4 (d 

FIGURE 12. Shadowgraph images of the turbulent cell at Ra - lo9. The arrow marks the plume under 
study. Field of view is about 7 x 5 cm2 through the centre of the bottom half of the cell. Time is: (a) 
r = 0, (b) 0.9 s, (c) 1.9 s, ( d )  3.0 s, (e )  4.0 s, (f) 5.1 s, (g) 6.1 s, (h)  7.2 s, (i) 8.2 s. 

To verify that these plumes are indeed like the laminar plumes we have studied, we 
show in figure 13 the digitized interface, along with a fit to a Rankine shape. The fit 
is good until t = 4 s, which corresponds to figure 12(e). Beyond that time the plume 
loses its Rankine form by being stretched, distorted by the surrounding flow. Shlien 
(1978) showed that an unstable plume solution looks very different. The instability of 
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FIGURE 13. Digitized front of the plume marked in figure 12(a). Dots are data, and the line is a fit 
to the Rankine shape. Fitted values of a are: (a) 8.5 mm, (6) 8.9 mm, (c) 10.5 mm, ( d )  11.5 mm, (e )  
13.0 mm, (f) 16.7 mm. Time is: (a) t = 0, (b)  0.9 s, (c) 1.9 s, ( d )  30 s, (e) 4.0 s, (f) 5.1 s. 

the cap is a spiralling mode, while the stem has a wavy instability. The cap first tilts one 
way, then begins to spiral round the stem, which pushes beyond it and leaves it behind, 
creating a new cap, to be subsequently shed also. Shlien also measured the Reynolds 
number for the size of the cap at the transition to be about 200. Thus the plume itself 
is not turbulent at Ra - lo0 and u = 6. Using our scaling and the measured cap 
velocity (u, = 0.69 cm/s) we can calculate the power input into the plume to be 
P = 1.7 W. The total power put into the cell in this state is about 60 W. 

The turbulent behaviour of the convection at Ra - lo9 and u = 6 is probably due to 
the interaction of many laminar plumes and the large-scale 'wind', not due to 
turbulence in the individual plume. We can expect that at higher Ra the plumes will 
destabilize and lead to new regimes, as discussed in Procaccia et al. (1991). We know 
from our scaling that in fluids of smaller viscosity (e.g. helium at low temperatures - 
see Castaing et al. 1989) the instability develops earlier, so the plumes there may 
already be turbulent at these Rayleigh numbers. 

9. Conclusions 
Most of the relevant scalings have been established. While vorticity has not been 
measured, the fact that the potential flow approach to the plume shape works indicates 
that this measurement may not be essential. Furthermore, the large scaling range we 
have with u (and Re) indicates that for the very slow, essentially structureless plumes 
in oil, as well as the plumes with large vorticity in methanol and water, the common 
features are those which disregard their vorticity content. We have formulated the 
scaling hypothesis in variables which take into account the finite size of the heater 
(Bf = gaPR' /~ 'pc , ,  and u = v / K ) ,  and checked that this is consistent at large distances 
with Batchelor's point-source scaling for the stem (using the variables F = gaP/pC,  
and v). 

Our experimental measurements have shown that : 
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(i) the rising velocity of the plume is constant, depends on the square root of the 
non-dimensionalized power, and is inversely proportional to the square root of the 
viscosity v (figure 4); 

(ii) the width of the cap grows by an enhanced thermal diffusion process (figure 6); 
(iii) the temperature has a linear dependence on power, no dependence on the 

control parameters, and is inversely proportional to height (figure 7), surprisingly like 
a diffusive profile. 

Interactions between plumes can be understood in terms of simple dynamics of single 
excitations. We have further found that plumes in some range of turbulent convection 
can be described by the above scaling. 

We thank B. Shraiman, S. Zaleski, L. Kadanoff and I. Procaccia for useful discussions, 
and B. Berge, A. Simon, and X. Z. Wu for experimental advice. This work was 
supported by the NSF under grants DMR 8722714 and MRL 8819860. 
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